Simulating Stochastic Populations. Direct Averaging Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization

We consider regularized stochastic learning and online optimization problems, where the objective function is the sum of two convex terms: one is the loss function of the learning task, and the other is a simple regularization term such as !1-norm for promoting sparsity. We develop extensions of Nesterov’s dual averaging method, that can exploit the regularization structure in an online setting...

متن کامل

Optimal Regularized Dual Averaging Methods for Stochastic Optimization

This paper considers a wide spectrum of regularized stochastic optimization problems where both the loss function and regularizer can be non-smooth. We develop a novel algorithm based on the regularized dual averaging (RDA) method, that can simultaneously achieve the optimal convergence rates for both convex and strongly convex loss. In particular, for strongly convex loss, it achieves the opti...

متن کامل

Stochastic projective methods for simulating stiff chemical reacting systems

Article history: Received 27 September 2011 Received in revised form 15 February 2012 Accepted 16 February 2012 Available online 22 February 2012

متن کامل

Binomial leap methods for simulating stochastic chemical kinetics.

This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using la...

متن کامل

Stochastic Approximation with Averaging Innovation

The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic approximation in a setting with innovations satisfying some averaging properties and to study some applications. The averaging assumptions allow us to unify the framework where the innovations are generated (to solve problems from Numerical Probability) and the one with exogenous innovations (market data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Processes

سال: 2019

ISSN: 2227-9717

DOI: 10.3390/pr7030132